

Libera, EVC-1 Mission

Li'be-ra, named for the daughter of Ceres in ancient Roman mythology

Provides continuity of the Clouds and the Earth's Radiant Energy System (CERES) Earth radiation budget (ERB)

- Measures integrated shortwave (0.3–5 μm), longwave (5–50 μm), total (0.3–>100 μm) and (new) split-shortwave (0.7–5 μm) radiance over 24 km nadir footprint
- Includes a wide FOV camera for scene ID and simple ADM generation to pave way for future free-flyer ERB observing system

Innovative technology:

> Electrical Substitution Radiometers using VACNT detectors

Primary operational modes:

Cross-track and azimuthal scanning; on-board calibrators; solar and lunar viewing.

Flight:

> JPSS-3, 2027 launch; 5-year mission

Partners:

LASP, Ball Aerospace, NIST Boulder, Space Dynamics Lab; CU, JPL, CSU, UA, UM, LBL

PI: Peter Pilewskie, CU LASP; DPI: Maria Hakuba, JPL

PM: Brian Boyle, CU LASP

Instrument Scientist: Dave Harber, CU LASP

Libera Operational Modes

Article in New York Times, Nov. 11, 2019

Libera Detector Coating

- The Libera detectors use a carbon nanotube (CNT) optical absorber
- CNT coatings have demonstrated the lowest reflectance from the UV through the far IR of any material
- On-orbit performance of CNT absorber has been demonstrated on the CSIM CubeSat

Libera Instrument Details

SW Internal Calibrator Cross-Section

- Degradation of the SW, Split-SW, and Total channels in the SW will be monitored at 6 wavelengths with respect to a reference SW calibration telescope: 375, 405, 469, 660, 810, 1550 nm
- SW calibration telescope is used for calibration tracking so it views only the internal LED sources

LW Internal Calibration

 CNT flat plate blackbody with high emissivity, tunable from 300-350K.

- Radiance is traceable via calibrated platinum resistance thermometers and SI traceable measurements of the surface emissivity
- Current on-orbit demonstration with the CIRiS CubeSat

Solar Diffuser

- Three-surface solar diffuser using *Spectralon*:
 - Primary observed weekly
 - Secondary observed monthly
 - Tertiary observed semiannually
- By comparing the observations from each surface we can detect and correct degradation on the primary and secondary diffusers.
- Solar diffuser is protected by a shutter that opens only for solar calibrations.

Libera Mechanism Animation

Steps of Animation

- 1. Limb-to-limb elevation scan
- LW calibrator views
- SW calibrator views
 - Note the telescope select mirror mechanism motion
- 4. Solar diffuser views
 - Note the solar diffuser shutter opens only for the solar calibration

WFOV Camera

Wide Field of View Camera

> 140° FOV

➤ 1 km sampling at NADIR

Bandpass: 865 nm, 10 nm bandwidth

2K x 2K CMOS focal plane array

 Demonstrates the feasibility of a smaller, simpler imager for scene identification and development of angular distribution models

Characterization & Calibration

Component-Level

➤ Optical properties of mirrors, filters, and detectors will be characterized across the full spectral range

Integrated System

- The integrated telescopes (mirrors, filters and detectors) will be calibrated directly against a SI-traceable irradiance detector
- ➤ Will be performed at a series of laser tie points from 0.3 μm − 184 μm
- ➤ Will be repeated with an ambient blackbody and a quartz tungsten halogen lamp
- ➤ A subset of these calibrations will be repeated following instrument integration
- At this point the *Libera* instruments will have a SI-traceable calibration
- Following environmental testing *Libera* will be transported to SDL for an independent validation of the Libera calibration

Libera Instrument Summary

- The Libera instrument shares many key design details with CERES to preserve data continuity
- Libera detectors and the internal calibration system will reduce uncertainties in the future ERB data record
 - ➤ Introduces new technology and lays the groundwork for future ERB instruments
- Libera adds a split-SW channel to derive SW VIS and NIR fluxes that add information on shortwave energy deposition.
- Includes a wide field of view camera for scene ID and simple ADM generation to demonstrate future free-flyer ERB observing system
- Extensive component and system level calibration plan supplemented by an independent validation of the instrument calibration

CERES Data Processing Flow

Fluxes and Clouds)

Libera Science Data Flow

Libera Science & Data Plan

Products & tasks	Specifics	Responsible	Team lead
L-1b radiances	TOT, LW, SW to RBSP	LASP	Peter Pilewskie
L-1b camera radiances	865 nm (15 nm), WFOV	LASP	Sebastian Schmidt
OSSE simulated radiances	Multi-spectral, multi-angle	LBL	Daniel Feldman
ADMs NIR & VIS	ERBE-like	NOAA/CIRES	Jake Gristey
Cloud fraction & Scene ID	L-2x, 1km, instantaneous ERBE-like	LASP	Sebastian Schmidt
TOA fluxes NIR & VIS	L-2x, SSF, ERBE-like	LASP/JPL	Maria Hakuba
SUR fluxes NIR & VIS	L-2 & L-3, SSF	UA	Xiquan Dong
Far-IR fluxes	TOT-(SW+LW), L-2 TOA	UM	Xianglei Huang
Quality assessments	NIR & VIS fluxes; TOA & SUR	JPL	Maria Hakuba
SO1 & SO3 Science	Beyond data production	All	All

Summary

Libera will:

- Measure broadband scattered SW and emitted LW radiances at climate quality levels of accuracy, precision, and stability.
- Maintain continuity and extend the ERB climate record
- Produce the daily global set of Level 1b radiances for the RBSP
- Demonstrate a pathway toward a sustainable, reproducible, and innovative observational approach that:
 - > Enhances scientific merit
 - > Reduces cost and the risk of gaps in future ERB measurements
 - ➤ Enables technology infusion to enhance capabilities of a future climate observing system
 - Advances our understanding of the Earth climate system with novel research and analyses.